
1.a)



RA:  $\Delta[ABC]$ 

**SO:** ponto C = (3,0) valor ótimo  $Z^* = -9$ 

**1.b)** Substituindo  $x_1 = x_1' - x_1''$  e acrescentando as variáveis desvio, resulta:

$$Min Z = -3x_1' + 3x_1'' + x_2$$

s. a: 
$$\begin{cases} x_1' - x_1'' + x_2 + x_3 = 3\\ -3x_1' + 3x_1'' + 4x_2 + x_4 = 12\\ x_1', x_1'', x_2, x_3, x_4 \ge 0 \end{cases}$$

**1.c)** Pontos extremos: **A, B, C.** Ponto **A**:  $x_1 = x_1' - x_1'' = 0 - 4 = -4$ ;  $x_2 = x_4 = 0$ ;  $x_3 = 3 + 4 = 7$ .

1.d) Max 
$$W = 3y_1 + 12y_2$$
  

$$y_1 - 3y_2 = -3$$
s. a: 
$$\begin{cases} y_1 + 4y_2 \le 1 \\ y_1, y_2 \le 0 \end{cases}$$

**2.a)**  $(x_1, x_2, x_3, x_4, x_5) = (20,0,0,0,12)$ . É SBA não ótima, porque na linha da FO ainda existe um coeficiente negativo.

**2.b)** CE: Min
$$\{-1\} = -1 \rightarrow x_2$$
; CS: Min $\{\frac{20}{2}; \frac{12}{1}\} = \frac{20}{2} \rightarrow x_1$ 

|          |                       |   |                | l.    |       |       |       |    |
|----------|-----------------------|---|----------------|-------|-------|-------|-------|----|
|          |                       | Z | $x_1$          | $x_2$ | $x_3$ | $x_4$ | $x_5$ | TI |
|          | Z                     | 1 | 0              | -1    | 2     | 1     | 0     | 10 |
| <b>(</b> | <b>x</b> <sub>1</sub> | 0 | 1              | 2     | 0     | 2     | 0     | 20 |
|          | $x_5$                 | 0 | 0              | 1     | 1     | 0     | 1     | 12 |
|          | Z                     | 1 | $\frac{1}{2}$  | 0     | 2     | 2     | 0     | 20 |
|          | $x_2$                 | 0 | $\frac{1}{2}$  | 1     | 0     | 1     | 0     | 10 |
|          | <i>x</i> <sub>5</sub> | 0 | $-\frac{1}{2}$ | 0     | 1     | -1    | 1     | 2  |

A solução ótima do primal é  $(x_1, x_2, x_3, x_4, x_5) = (0,10,0,0,2)$ . A solução ótima do dual é  $(y_1, y_2) = (2,0)$ .

**2.c)** O preço sombra do primeiro recurso é  $y_1=2$ , isto significa que por cada unidade deste recurso disponibilizada a mais (a menos) o lucro aumenta (diminui) 2u.m., enquanto a BO se mantiver (o primeiro recurso é totalmente utilizado no plano ótimo,  $x_4=0$ ). O preço sombra do segundo recurso é  $y_2=0$ . Assim, alterações na quantidade disponível deste recurso não originam alterações no lucro, enquanto a BO se mantiver (este recurso é internamente abundante, pois sobram 2 unidades,  $x_5=2$ ).

**2.d)** Se, por exemplo,  $x_4$  passasse a variável básica (VB) e  $x_1$  a variável não básica (VNB) obtinha-se uma solução básica admissível adjacente à do quadro dado e diferente da encontrada em **b)**, em que as VB seriam  $x_4$  e  $x_5$  e as VNB as restantes (se  $x_3$  passasse a VB e  $x_5$  a VNB seria outro exemplo).